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Summary. The clustering around a cosmic string leop in an
universe consisting, at present, of.baryons and massive
neutrinos has been calculated in linear perturbation
approximation. We pay attention mainly on the bias in the
clustering. It has been shown that the biased clustering of
baryons started just after the decoupling time; the
clustering will form an object with structure of a core
dominated by baryons in the inner region and a hatlo
dominated by massive neutrinos in the outer region. The
present Jlength scale of the cores is about several decades
Kpc, depending on the rest mass of neutrinos. The rotaticn
curves of such objects are remarkKable flat. The amplitudes
of the rotation curves decreases with cosmic time. Comparing
the observed rotation velocities with calculated results, it
is found that galaxies would be formed in the period of
redshift z > 3 - 10. The maximum length scale of the bias is
about the same as for clusters of galaxies. This result
seems to be useful to explain the correlation between the
features of rotation curves of cluster galaxies and the

galaxy’s distance from the center of the cluster.
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1. Introduction

Bias is an important topic in galaxy formation., However,
in different articles, the word of bias has sometimes been
used in different meaning. From directly observed phenomena,
the bias means that the distribution of galaxies are
overabundant in the regions of high density (White, 1988).
For instance, the systematic growth of mass—to-light ratio,
M/L, with the size of the objects shows that galaxies are
overabundant relative to dark matter. In rich clusters,
galaxies are overabundant relative to the dark matter by
about a factor of 5. The mean mass densities given by
galaxies found in groups, clusters and even superclusters
are always lower than 1. On the other hand, the spatial
geometry of the universe seems to be flat 2= 1 (l.oh,
1987). A common hypothesis made to determine the mean
density of visibie objects is that the distribution cof all
matter is concentrated in or proportional to vieible objects
and that there does not exist a more uniform distribution of
matter. Therefore, the requirement for {2 to be equal to I
also implies that the dark matter is not clustered

obviousiy, at least, on scales of less than that of clusters

of galaxies (Fang et al, [982).
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This result forces us to search for the ?oilowing
problem: how can su;h differnces in £he distributions of
baryons and dark matter come about ? Namely, why do the
baryon cluster obviously, especially on smaller sascales,
while the dark matter has up to now remained rather uniform
on these scales ? These probiems had been studied by us for
a two component universe. It has been found that, in a two
component wuniverse, if the densities .Fland ?2, the Jeans
lengths %EJ and :\ZJ of the two components satisfy the
inequalities Pl << ?2, ﬁlj'{{ :\2.1' the developed
inhomogeneties with scale less than 'AZJ in.the non-~dominant
component | are always of larger amplitude than those in the
dominant component 2, regardless of whether the initial
perturbation is in | or in 2. This mechanism can, at ieast
qualitively, be used as a possible origin of the biased

clustering.

By using the above-mentioned mechanism we show
numerically that, in an universe consisting of massive
neutrinos and baryons, the clustering of baryons on small
scales is always larger than that of neutrinos, regardless
of whether the initial perturbations exist in baryons or in
neutrinos (Fang, et al. 1984), This means that the
clustering of baryons ‘will be biased with respect to

neutrinos, However, in this model, the baryonic density
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perturbations on Jlarger scales get to be nonilinear always
earlier than that on the smaller scales. Therefore, it is
still not quantativély enough to change the top-down
clustering scenario, which is hard to reconcile with
observations. This is a common difficulty in hot dark matter

model .

In aorder to overcome the above-mentiocned difficulty, we
discussed a model of the universe containing twa types of
dar¥ matter, massive neutrinos as a dominant component and
another type of more massive particles as non-dominant
component, which plays as the seeds to form small scale
objects before the formation of large one. In this case
there should be two types of small scale objects: one is
related to the formation of large scale structure, while the
other 1is not linked with the large scale structure. These
results already gave a plausible picture on the clustering
of quasars, especially on the difference between the
clusterings of quasars with large-redshift and
smal!l-redshift (Chu and Fang, 1987>. Comparing with cosmic
string model, it can be found that the cosmic string Jjust
plays about the same role as that of non-dominant component
of dark matters in the considered model. Therefore, the

plausible results will also be maintained in a hot dark

matter plus cosmic string universe. This is the motivation
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to study the biased clustering problems in a hot dark matter
plus cosmic string universe, namely, we will still consider
an universe containiﬁg massive neutrinos and baryons, while
the cosmic strings play the role of primeval seeds for the

density perturbations.

The'other reason to study this model is that massive
neutrino is still one of the most likely candidates of dark
matter in the universe., The neutrions emitted from SN 1987A
seems to further strengthen the interest in the role of
massive neutriﬁo in the universe. Moreover, the cosmic
string model with cold dark matter are unliKely to generate
large-gscale streaming velocities (Lynden—Bell et al., (988),
and the nonlinear halos accreted by the strings may overlap
before the present. All! of these difficulties also let

people to consider a hot dark matter plus cosmic string

model (Bertschinger and Watts, 1988).

2. Qualitative feature of clustering

Let us consider a cosmic string loop with mass Ms .
which is surrounded by two components of matters | (baryons)
and 2 <(neutrinos). The two components interact with each

other only through gravitation. In a neutrino dominated
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universe, after the decoupling between baryons and
radiation, the mass density ratio of baryvons ?t to rmassive

neutrinos 93 is

0 L _

= o LIW7(Y 1y 1006V )~ (mgo /5).

P (z'_: vil )™ (n10/5) D
where the, sum runs over all neutrino species and Y(lo =

- [
('YIB/?]r)xlO\ denotes the number density ratio of baryons to
photons. After the decoupling, the ratio of Jeans length (or
free streaming length) of baryons ()lj to massive neutrinos

Alj is given by
T2 o 0.85:107 2, f30eV 13 (o /5) 112, (2>

where (llj =[lﬁqTr/G'f,)l/2 and 9\2:=(U;1T/Gf2)vz are the Jeans
lengths of components ! and 2, respectively, and U, and U.‘z
being the corresponded velocity dispersions. Equations (1)
and (2) shows the system we should considered is

L€, Ay €y ¢3)

In this case there are following relevant time scales
with respect to a density perturbation of length scale ﬂs

two damping times are defined by
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ta~fn, b~ v 4
and a growing (collapse) time is defined by
by ~ {4xGp + 3(;%/13)-112 (s

where ? =-?‘+ ?2 . The conditions for the growth of density

perturbations in | and 2 are
by Stan b St | 3
Therefore, when the ciustering dominated by gravity of the

string, 1i.e. ¢wa$3GMs/£3, the clustered lengths of

components | and 2 around the string Mg are
L S 3GMgfo]), 1 < (3GM/v3); (7
When the clustering dominated by the self-gravity of the two

components of matter or 4,‘-‘,—(;'“-?2,3&”5/13, the clustered
lengths of 1 andd 2 are given by

I 2 uj(4xG )2, by > v/ (41Gp)H2, (8

Considering condition (2), we find from eqs.(7> and (8) that

in both cases the clustered length scales of component | are
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wider than that of component 2, namely, the clustering of
baryons will be easier and more rapid than neutrinos. Even a
significant clusteriﬁg with scale of about A‘J can form in
the non-dominant component |, while not in the dominated
component 2. This means the clustering of baryons will be

biased with respect to massive neutrionss.

3. Linear perturbation theory

We now calculate the growth of density perturbations
around a string lecop in an expanding 4Wniverse. The method
used in this calculation is the same as wusual linear
perturbation theory (Gilbert, 19&88; Fang et al. 1984;

Bertschinger and Watts, 1988).

We assume that the universe is flat {l= 1, The present
density of massive neutrinos is flyﬂ 0.9 and baryons j)b.-
0.1. The universe became matter-dominated at redshift 1+ Zeq =
2 ul(!'q'h'1 . fn this case the dimensionless conformal time is

given by

) al (9
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where a(t) is the cosmic scale factor normalized to unity at

the present time, and g, = /{1 +2z,), req-scﬂol 12,

The unperturbed distributions of baryons and neutrinos
are described by the Boltzmann and the Fermi distributions,

respectively,

f= n“’} : -xp(—l-"—)’)

2xugp )2 2l uy ¢10)

m_ 1 u -1
f =M Gx§(3)u20( xp( )+ l) i

(o) (e s
where ?‘ and ?2 are the unperturbed densities of baryons
and neutrinos, respectively. 5(3) is Reimann § fuaction. The

camoving wvelocities qu are related to the Jeans lengths

AIT as
U.‘[}=(GPP)/I)%A"!’ (12>

The density perturbations in both components can be

described by

bix = 1&3 f e~k [~ [T)dxdu €13

where f: are the perturbed distribution functions. It can be

shown that, in linear approximation, the density
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perturbations in baryons and in neutrinos satisfy the
following equations (Fang et al. 19843 Bertzchinger and

MWatteg, 1988):

b= [ df h (lli%//g)F(kx. & N6 + Qabyy + Gilk, £)] ¢ 14>

where F} are the Fourier transform of the distribution

*

0
functions fk . W;is the free-streaming comoving distances

/
between conformal time g and g’, namely

Xil€16) = ainglu( ”/fé) | (15

where
(0}y1/2
= (A dan ™ i oy, 1o

= 0.074(100/m, ) 17

and nh,is the rest mass of neutrinos in the unit of eV, The
string loop is treated here as a point of mass Pis . The
accretion of each component by the string loop are described

by functions G;in eq.(14) defined as
_ sinfkrggl¢-¢ .
-l 6

6, £ < oy

Gy =
(18
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sti{kroqf) C19)
Gy=1- =20l
kreq
where giu& = {,294 is the conformal time of the universe

becomming matter-dominated. The clustering of baryons <can
only otcur after the decoupling time, which is about the

same as geq’ so we take G;lto be zero when E( g .

4, Numerical examples

Ag an example we calculated the linear growth of density
perturbations of baryons and neutrincs for sceveral
wavenumbers K. For an easy compariscon of our results with
those obtained in the case of the universe consisting only
cosmic strings and massive neutrinos but without baryons
(Bertschinger and MWatts, 1988, we also used hng. as the
integration variablie and chose the starting point at §==10-4
The numerical results are given in Figs. 1 and 2, in which
we takKe the ratio of baryonic Jeans length to neutrino’s
free~-streaming length as'kg/ﬁ%Ia 0.01. In faﬁt, our results
do not sensitively depend on this ratio as long as that it

is much larger than 1.

Fig.!l showed that the ciustering in both baryons and
neutrinos are no longer to be completely top-down scenario.

The macximum of %‘at present time occurs at the length scale
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of about i/k =Feq/1.59, which is about the same as the scale
of c¢lusters of galaxies. Namely, the density perturbations
with Jlength scale of about the same as for cluster of
galaxies can became nonlinear earlier than that of
perturbations with length scale as for superclusters. In the
nonlinear stage the clustered objects will quickly be
virialized. Therefore, the above-mentioned length scale can
Just be ;sed to explain why the conftiguration of objects
with scale less than that of clusters of galaxies are often

symmetrical or regular, while larger cbjects are always

irregular (Fang and Yan, 1988).

Fig.!l also showed cbviocusly that baryons cluster more
strong than neutrinos after the time of geq‘ When £ )-geq,
the density perturbations for all wavenumber K always

satisfy the following relation

It can also be seen from Figs. | and 2 that for larger K,
the correspond larger differences between Slrand S;K' This
means for smaller length scale of the clustering, correspond
higher the ratio of the densities of baryons to neutrinos.

This is Jjust the biasing scenario.
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Fig.2 plots the growth of density perturbations at the
distances of x = ldd*réﬁ and 10“'rg& from the cosmic
strings. It shows thét there is a remarkable up~jump in the
ciustering of baryons at gﬂ&’ namely after the Thomson drag
time, the baryvonic density perturbation will immediately
overcome the density perturbation of neutrinos. This will
lTead to, in configurational space, a baryonic density around
the strin; loop which overcomes the neutrino density.
Therefore, the clustering around a string loop will form an
object with a core of barvyons and a halo of neutrincs., We
define the core radius t, as the distance from the string
loop, at which the barvonic density is equal to the neutrinoc

density
aulre) = pafre) 21

Fig.3 shows the evolution of the core radius Y. against
redshift. The maximum of radius for reasonable mass of
string loops is not larger than about 100 Kpc, which is not
strongly dependent upon the rest mass of neutrino. This is

also consistent with the observed biased clustering.
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S. Application and discyssion

In general, the results found from linear perturbation
theory cannot be ditrectly compared with observations,
because the nonlinpear collapse may change the clustering
picture in the linear growth stage. However, the spherical
collapse model in an expanding universe showed that an
accfeted mass shell stops to expand and approaches a maximum
radius Yﬁax when the density perturbation implied by linear
theory 1is 1.5 (Zel’dovich, 1970), namely, the linear model
is a reasonable approximation for the clustering until the
mass shell drops out from the Hubble flow.'After the shell
turns around, it coliapses to achieve virialization, while
the virialized radius Y. differs from rhax enly by a factor

of about 2 (Gunn, 1977; Shu, 1978},
Pyir = fmllz/z- (22)

Therfore, some features of the clustered objects at present
time will not strongly be changed from those existing when
the objects just drop out from the Hubble expansion. This
can be called a drop picture. Under this picture, some
results of linear model can also be used to explain, at
least qualitatively, observed phenomena, especially, for the

properties which are directly related to the drop out time.
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Fig.4 shows the evolution of the profiles of density
perturbations around. a string loop. It is obviously from
Fiq.4 that a core-halo object can be formed by the accretion
of the loop. The core is dominated by baryons, and the halo
by massive neutrinos., More interesting result might be the
flatness 'of the rotation curves, which are plotted in Fig.S
for several masses of the string Joops. The rotation
velocity is calculated as

M

r
V== bf:4xL plr)ridr (23

1t can be seen from Fig.9 that, even at the time of redshift
z > 5, the rotation curves already, qualitatively, owned the
same features as observations, [t means that the mass
density in the halo is approximately proportional to x_z .
This is different from the pure neutrino model, in which, in
the linear approximation, the density around the loop shows
profile of about x-|(Bertschinger nad Watts |988). In our
model, the biased clustering of baryons contributes a steep
density profile, so the total! mass density of baryons and
neutrinos will, then, distribute as the needs of a flat
rotation wvelocity. If all mass shells obey the relation of

eq.(22) in their virialization, the x"'2 profile and the

flatness of the rotation curves will probably be maintained
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after the virialization.

The amplitudes éf the z = 0 rotation curves given by
Fig.S are lower than observations. According to the drop out
picture, we should not compare the present rotation velocity
with 2z = 0 curves in Fig.5, but with that of drop out time.
Fig.6 give the rotating velocity at a present distance of
100 Kpc from the loop as a function of redshift. The
rotation welocity decreases with the cosmic time. We find
from Fig.é that the vaiues of observed rotation velocities
corresponds to the drop out time of about z 2 3 - 10, which

seems to be acceptable as the era of galaxy formatiom.

As mentioned in sec.3, the maximum length scale of the
biased clustering is to be about the scalie of clusters of
galaxies. The accretion of string loops will be able to form
an inhomogeneity of the density ratio of baryons to
neutrinos on scale as large as the clusters. This result
might be used as an explianation of the correlation between
the features of rotation curves of cluster galaxies and the
galaxy‘s distance from the center of the cluster. Recently,
it has been found (Rubin et al. 1988; Whitmore 1988) that a.
the amplitudes of rotation curves of cluster galaxies,
especially Sa and 8b, are low compared with field galaxies

of equivalent Hubble types and luminosities; b. in clusters,
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the inner galaxies tend to have falling rotation curves,
while the outer galaxies tend to have flat or rising

rotation curves.

A most passible cause of these features for cluster
galaxy’s rotation curves is that the cluster galaxies have
differente internal dynamics compared with isclated fieid
galaxies. [f the environment within the <cluster was
responsible for the properties of the altered galaxies, then
this might reveal itself by a variation in galaxy parameters
as a function of distance from the cluster'center. The most
important environment parameter related to the rotation
curves is the density ratio of baryons to dark matter. Both
above-mentioned observed results seem to show a deficiency
of dark matter in clusters compared with dark matter in
field. In fact, observation directely showed that the M/L
gradients of galaxies in the inner regions of clusters are
flatter than for galaxies in the outer regions. The
developed model has, indeed, the required properties: a. the
baryon-to-neutrino density ratio in clusters is higher than
that in field; b. in cluster, the ratio decreases gradully
from the inner regions to the outer region. I[f this
explanation is real, the cluster galaxies should form in the

same time cr even iater than the time of cluster formation,
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Finally, we should mention the influence cf the motion of
string loops on our results. A; all models of spherical
accretion of loops, our model! also neglects the effect of the
peculiar velocity of loops. This approximation becomes
serious, because, recently, it has been shown (Bennett and
Bouchet (989> that the motion of string locps will, more or
less, wash owt the correlation of loop initial positions,
This means that the one~]loop-one-cbject mode! seems to be a.
poor approximation on the clustering of cosmic strings.
Nevertheless, some results obtained by this approximation
would still be reasonable even considering loop motion. With
respect to a perturbation with iength scale ,ﬂ y the time
scale of loop motion is tlﬁup/vlp, vlpbeing the velocity of
loops, and the collapse time tg is ‘given by eq.(5). Obviously,
if tlp> tg y clustering will not strongly be affected by
the loop motion. In this case, loop only plays as a initial
trigger of clustering. After the very short period of the
initial wup-jump (Fig.2), clustering will be dominated by
se]f-gravity of neutrinos and baryons. Since baryons
eq’ the condition of tlp> t is
equivalent to a constraint Jf > (wlp/ch%q . When Vip™ 8.5 ¢,

starting to <collapse at

we have (ﬁQIChiq,v 20n7L Mpc. Therefore, the conclusions
developed here related to length scales of about or larger
than that of ciusters of galaxies would qualitatively be

maintained under the influence of loop motion.
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This revised version is done after the Beijing massaccre
at June 1989, which forces one of us (Fang) to become a
temporary refugee. He wishes to deeply think all persons who
help him to stil]l be able to work on astrophysics in this
hard time. We also wish to think Dr.Schaeffer for his

L4

valuabie suggestion.
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Figure Captions

Fig.1 The evolution of Fourier components of density
perturbations around a cosmic string locop against conformal
time % , where the solid line describes the baryonic
component and dashed line the neutrino component. The rest
mass of neutrinos is taken to be m = 100 &V in (a)> and 10
eV in (). The conformal wavenumbers correspond respectively

to k\fe&:a.s?e, 1.59, 6.31, 25.1, 100, 398, 1590.

Figq.2 The evolution of the baryonic (solid) and the neutrino
(dashed) density perturbations at the distances x = 16-!31
(subscript 10 and 10"rgq (subscript 20 from the string '
loop; where A and B denote, respectively, m =100 eV and 10

eV.

Fig.3 The baryonic core radius as functions of redshift. The
neutrino mass is taken to be 100 eV (solid) and 10 eV
(dashed). The numbers on the lines are the string loop mass

in the unit of 10 M.

Fig.4 The baryonic (solid) and neutrino <(dashed) density
perturbaticn profiles around the string toop at different

cosmic times. (ay m, = 100 eV (b) m

v y, = 10 eV.
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Fig.5 Rotation curves of the object formed by the accretion
of string loop at the times of redshifts z = 0.04 (solid)
and z = 5,16 (dashed). the numbers on the curves are the

mass of the loop.

Fig.8 The evolution of rotating wvelocity at a present
distance 100 Kpc from the locop. The rest mass of neutrinos
is taken to be 100 eV (solid) and 10 eV <(dashed). The

numbers on the curves are the loop mass in unit of 10 Iﬂ@ .
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